Combinatorial aspects of continued fractions

نویسنده

  • Philippe Flajolet
چکیده

We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the characteristic series of labelled paths in the plane . The equivalence holds in the set of series in non-commutative indeterminates . Using it, we derive direct combinatorial proofs of continued fraction expansions for series involving known combinatorial quantities : the Catalan numbers, the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Eulerian numbers . . . . We also show combinatorial interpretations for the coefficients of the elliptic functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and Meixner polynomials . Other applications include cycles of binomial coefficients and inversion formulae . Most of the proofs follow from direct geometrical correspondences between objects .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path generating functions and continued fractions

This paper extends Flajolet’s (Discrete Math. 32 (1980) 125-161) combinatorial theory of continued fractions by obtaining the generating function for paths between horizontal lines, with arbitrary starting and ending points and weights on the steps. Consequences of the combinatorial arguments used to determine this result are combinatorial proofs for many classical identities involving continue...

متن کامل

Toric Surfaces and Continued Fractions

One goal in studying toric varieties is to put general theory in more concrete, combinatorial terms. It is striking that when one considers toric surfaces (obtained from fans in the plane) that continued fractions—an object originating in number theory—pop up in the resolution of singularities. The purpose of this article is to provide an exposition of this phenomenon and other ways in which co...

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

The Formal Theory of Birth - and - Death Processes , Lattice Path Combinatorics , and Continued Fractions

Classic works of Karlin-McGregor and Jones-Magnus have established a general correspondence between continuous-time birth-and-death processes and continued fractions of the Stieltjes-Jacobi type together with their associated orthogonal polynomials. This fundamental correspondence is revisited here in the light of the basic relation between weighted lattice paths and continued fractions otherwi...

متن کامل

A note on 2-distant noncrossing partitions and weighted Motzkin paths

We prove a conjecture of Drake and Kim: the number of 2-distant noncrossing partitions of {1, 2, . . . , n} is equal to the sum of weights of Motzkin paths of length n, where the weight of a Motzkin path is a product of certain fractions involving Fibonacci numbers. We provide two proofs of their conjecture: one uses continued fractions and the other is combinatorial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 1980